Abstract
Liquid-based mobile interfaces, in which liquids are being utilized as structural long-term components, have shown their multifunctionality in materials science, such as the hydration layer of polyelectrolyte brushes used for artificial implants, stabilized lubricants for antibiofouling, anti-icing, self-cleaning, optical control, and so forth. However, these currently available systems do not usually show a response to environmental stimuli. Here, we describe a strategy for preparing thermoresponsive mobile interfaces made from novel silicone-based lubricants that display lower critical solution temperature and demonstrate their capabilities on controlling in situ water wetting and dewetting, thermo-gating penetration, and optical properties. These properties allow the mobile films to form a kind of erasable recording platforms. We foresee diverse applications in liquid transport, wetting and adhesion control, and transport switching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.