Abstract

The objective of this project is to evaluate the percentage dose reduction in cardiac implantable electronic devices (CIEDs) using a thermoplastic wrapped lead sheet. The dose to CIED is evaluated in various situations with and without a lead shield. The efficiency of this type of shielding is supported by measurements made with a commercial plastic scintillation detector (PSD). Percentage depth dose (PDD) curve and lateral dose measurements (LDMs) were made with and without shielding for photon and electron beams. Photon LDMs were made at a depth of 0.5 cm. PSD measurements were compared with dose calculation from the treatment planning system (TPS). The benefit of shielding is greater at 23 MV than at 6 MV, with an average reduction of 71% and 59% of dose, respectively, for out-of-field distance range between 3 and 15 cm. Measurement of posterior beams shows there is no significant increase in skin dose due to backscatter from the lead sheet even when the field intercepts it. Large deviations between TPS calculation and measurements have been observed. The use of lead shielding with an anterior field is advised and provides an easy way to decrease the cumulative dose to CIEDs. Interception of shielding by an electron beam would increase significantly the cumulative dose to CIED for high energies or decrease the quality of the treatment. For a posterior out-of-field, shielding does not have a significant impact on CIED dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.