Abstract
In this work, the thermomechanical viscoelastic response of a high temperature polymer matrix composite system made up of T650-35 graphite fibers embedded in PMR-15 resin is studied through a micromechanical model based on the assumptions of simplified unit cell method within a temperature range of 250–300℃ corresponding to aerospace engine applications. The advantage of this particular micromechanical model lies in its ability to give closed-form expressions for the effective viscoelastic response of unidirectional composites as well as each of their constituents. Using the experimental data of the creep behavior of thermostable PMR-15 polyimide, the micromechanical model is first calibrated to account for the effect of temperature. The resulting elastic and viscoelastic responses are found to be in good agreement with the existing experimental data. The validated model is then used to predict the behavior of the composite material under different combinations of thermal and mechanical loadings. The results clearly demonstrate the importance of accounting for the viscoelastic effect of the matrix material as the temperature increases. Current works on modeling temperature-dependent viscoelastic behavior of polymer matrix composites are mainly based on the assumption of thermorheologically simple material. However, through the present approach where the matrix is modeled as a thermorheologically complex material, the effect of temperature on the elastic and viscoelastic response of the composite system can be individually investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.