Abstract

Thermologic investigations were carried out on three species of Amorphophallus: A. konjac, A. paeoniifolius and A. titanum, all the three strongly thermogenic. Moreover, their breeding system is described as protogynous, the heat production occurs in the appendix and male florets, no warming is seen in the female florets and pollen is shed after the end of heat dissipation. All the three have large, impressive inflorescences developed from big corms and have considerable sizes. During their inflorescence, they have a strong scent like rotting meat with carrion smell. Amorphophallus konjac (K. Koch) has a large, exposed appendix that produces a disgusting scent during the day of the female phase of blooming. The appendix produces about 3 W for several hours, and the temperature elevation is about 2.9 K. The low temperature elevation is attributed to a high surface area and a high evaporative heat loss from the appendix. During the male phase of blooming, a second episode of thermogenesis occurs during the same time of day, apparently from the male florets, reaching a maximum of 1.6 W. Amorphophallus paeoniifolius (Dennst.) Nicolson has a spadix that varies considerably from that of A. konjac and A. titanum with an amorphous upper end of the appendix like a shrunken red pepper instead of cone-like appendices for the two others. It shows thermogenic temperature increases of up to +9.1 K in the male florets and +2.6 K for a short time in the appendix. Amorphophallus titanum (Becc.) Becc. ex Arcang is the largest inflorescence of the world, growing up to 300 cm high and 250 cm across. A much smaller plant was observed during its thermogenic period by means of infrared (IR) thermography, IR thermometry, and thermometric data logger. The temperature maximum showed 36.6 °C at ambient 24.0 °C, which means a temperature difference of about +12.6 K. In the morning of the next day, all temperatures are back to ambient at about 24 °C. Estimates of the heat production (about 74 W) were made from the geometric data and special assumptions with respect to the heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.