Abstract

The current study reports the effect of low viscous aliphatic reactive diluent (RD), MWCNT and VGCF on the curing kinetics of amine cured epoxy adhesive system employing non-isothermal differential scanning calorimetric (DSC) technique. Non-isothermal DSC thermograms of epoxy adhesive were studied at various heating rates: 5, 10 and 15 °C/min. The decrease in the exothermic peak height with the introduction of MWCNTs and VGCFs was taken as proof of the acceleration effect of nano-fillers on the epoxy-amine curing reaction. Also, increased T onset , T P and ΔH curs values were observed for epoxy/RD adhesive system at all heating rates. The value of activation energy (E a ) was determined using Kissinger and Flynn-Wall-Ozawa methods. Experimental results showed that the addition of 10 wt% RD increased the E a from 60 to 63 kJ/mol on account of the reduced viscosity, allowing better contact of resin with the curing agent. Furthermore, MWCNTs have an accelerating effect on the cure kinetics that does not change the autocatalytic cure reaction mechanism of epoxy resin. It was also found that the addition of MWCNT and VGCF decreases the overall degree of conversion, as evident with lower ΔH cure and E a of the cured adhesive when compared with epoxy/RD system. The dependency of E a on degree of conversion ranging from α =0.1 to 0.9was also investigated. The two normalized functions y(α) and z(α) were also considered in order to study the complex curing mechanism. The kinetic parameters m, n and lnA were obtained by using two parameter autocatalytic Sestak-Berggren model. The curves revealed good agreement between experimentally determined and theoretically obtained MWCNT/VGCF reinforced epoxy adhesive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.