Abstract

Phytopathogenic fungi may affect both the cuticular and the stomatal conductance of plant tissue resulting in significant modifications of leaf temperature. Venturia inaequalis colonizes apple leaves below the cuticle (subcuticularly) causing scab disease. The suitability of digital infrared thermography for sensing and quantifying apple scab was assessed by investigating the effects of V. inaequalis on the water balance of apple leaves in relation to the disease stage and the severity of scab. Transpiration was measured by infrared thermo-imaging to evaluate spatial heterogeneity of the leaves in response to localized infections. Fungal development was assessed microscopically. Subcuticular growth of the pathogen caused localized decreases in leaf temperature before symptoms appeared that significantly increased the maximum temperature difference (MTD) of leaves. The MTD increased with scab development and was strongly correlated to the size of infection sites (r²linear = 0.85) and overall disease severity (% diseased leaf area, r²square = 0.71). In later stages of the disease, the MTD decreased because of leaf senescence. Thermographic measurements revealed differences in disease severity resulting from disease stage, resistance of host tissue and differences in the aggressiveness of V. inaequalis isolates. Subcuticular growth of the pathogen was beyond the area of conidia production, therefore, the area of leaf with increased transpiration was larger than the scab lesions; the proportion decreased from >70% in the early stages to <20% for mature lesions. Leaf transpiration was increased by all stages of scab development, therefore, MTD may be used not only for the differentiation between diseased and non-diseased leaves, but also for disease quantification, e.g. in screening systems and monitoring in precision agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.