Abstract

Being a major obstacle, Ag2Te has always been restricted in p-type AgSbTe2-based materials to improve their thermoelectric performance. This work reveals a stabilized AgSbTe2 through Sn/Ge alloying as synthesized by melting, annealing, and hot press. Interestingly, addition of Sn/Ge in AgSbTe2 extended the solubility limit up to ∼30% and hence suppressed Ag2Te in Ag(1-x)SnxSb(1-y)GeyTe2 compounds and led to enhanced electrical transport. Moreover, electrical and thermal transport properties of AgSbTe2 have been greatly affected by the phase transition of Ag2Te near 425 K. However, high-entropy Ag0.85Sn0.15Sb0.85Ge0.15Te2 compound results in a stabilized rock-salt structure and presents a high power factor of ∼10.8 μW cm-1 K-2 at 757 K. Besides, density functional theory reveals that available multivalence bands in Sn/Ge-doped AgSbTe2 lead to reduction in energy offsets. Meanwhile, a variety of defects appear in the Ag0.85Sn0.15Sb0.85Ge0.15Te2 sample due to entropy change, and thus lattice thermal conductivity decreases. Ultimately, a high figure of merit of ∼1.5 is attained at 757 K. This work demonstrates a roadmap for other group IV-VI materials so that the high-entropy approach may inhibit the impurity phases with extended solubility limit and result in high thermoelectric performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.