Abstract

Using density functional theory combined with the first principles calculation method of non-equilibrium Green's function (NEGF-DFT), we studied the thermoelectric (TE) characteristics of one-dimensional γ-graphdiyne nanoribbons (γ-GDYNRs). The study found that the thermal conductivity of γ-GDYNRs has obvious anisotropy. At the same temperature and geometrical size, the lattice thermal conductivity of zigzag-edged γ-graphdiyne nanoribbons (γ-ZGDYNRs) is much lower than that of armchair-edged γ-graphdiyne nanoribbons (γ-AGDYNRs). We disclose the underlying mechanism for this intrinsic orientation. That is, γ-AGDYNRs have more phonon dispersion over the entire frequency range. Furthermore, the orientation dependence increases when the width of the γ-GDYNRs decreases. These excellent TE properties allow armchair-edged γ-graphdiyne nanoribbons with a planar width of 1.639 nm (γ-Z(2)GDYNRs) to have a higher power factor and lower thermal conductivity, ultimately resulting in a significantly higher TE conversion rate than other γ-GDYNR structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.