Abstract

Thermoelastic bending behaviour of novel functionally graded polymer nanocomposite rectangular plate reinforced with graphene nanoplatelets (GPLs) whose weight fraction varies continuously and smoothly along the thickness direction is investigated. The generalized Mian and Spencer method is utilized to obtain the analytical solutions of nanocomposite rectangular plate with two opposite edges simply supported and under a uniformly distributed transverse load and a temperature change. Three GPL distribution patterns are considered. Comparison between the present analytical solutions and those available in literature is carried out to verify the accuracy of our analytical solutions. A parametric study is conducted to examine the effects of GPL’s weight fraction, distribution pattern, geometry and size as well as the temperature change and plate boundary conditions on the stress and deformation fields of the nanocomposite plates. Numerical results show that the addition of GPLs at a very low content can have a significant reinforcing effect on the thermo-mechanical response of the plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.