Abstract

Thermoeconomic optimization of a typical 1000 MW Pressurized Water Reactor (PWR) nuclear power plant coupled to a Multi Effect Distillation (MED) desalination system with thermo-vapor compressor (TVC) is performed. A thermodynamic modeling based on the energy and exergy analysis is performed while economic modeling is developed based on the Total Revenue Requirement (TRR) method. The objective function based on the thermoeconomic analysis is obtained. The proposed cogeneration plant, for simultaneous production of power and fresh water, including sixteen decision variables is proposed for thermoeconomic optimization in which the goal is minimizing the cost of system product (including the cost of generated electricity and fresh water). The optimization process is performed using a stochastic/deterministic optimization approach namely as Genetic Algorithm. It is found that thermoeconomic optimization aims at reduction of sub-components total costs by reducing either the cost of inefficiency or the cost of owning the components, whichever is dominant. For some components such as evaporators, the improvement is obtained by reducing the owning cost of the sub-system at the cost of reduction of the thermodynamic efficiency. For components like as TVC + de-superheater, improvement is achieved by increasing the thermodynamic efficiency or decreasing the inefficiency cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.