Abstract

In this paper, the thermoeconomic concept is applied to the optimization of a double-effect H 2O/LiBr VAR system, aimed at minimizing its overall product cost. A simplified cost minimization methodology based on the thermoeconomic concept is applied to calculate the economic costs of all the internal flows and products of the system by formulating thermoeconomic cost balances. Once these costs are determined, the system is thermoeconomically evaluated to identify the effects of the design variables on cost of the flows and products. This enables to suggest changes of the design variables that would make the overall system cost-effective. Finally, an approximate optimum design configuration is obtained by means of an iterative procedure. The result shows significant improvement in the system performance. The sensitivity analysis shows that the changes in optimal values of the decision variables are negligible with changes in the fuel cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.