Abstract
This paper presents thermodynamic and thermoeconomic analyses as well as optimization of a re-compression supercritical CO2 cycle. A gas turbine cycle (GT) is adapted as a model to an existing plant to generate additional power in Gaziantep Municipal Solid Waste Power Plant (GMSWPP). The total capital cost rate and total cost rate of the GT cycle are found to be 20.47 $/h and 77.14 $/h, respectively utilizing SPECO by using the exhaust gas of 16 kg/s with 1.9 bar and 566.7 °c. The net power, the energy and exergy efficiencies, the total cost and the total capital cost rates of the GT cycle are optimized by +1.73%, +3.21%, +2.45%, −1.11% and −1.64%, respectively using NSGA-II in MATLAB in the range of 2.5≤PR≤4, 200≤P6≤216, 16≤T0≤23 and 9.1≤LMTD≤12.9. This paper provides an originality such that optimization as well as thermodynamic and thermoeconomic analyses is performed simultaneously for an existing MSW power plant, which can be stressed that there are scarce amounts of studies related on this field. Moreover, as another novelty, it can be emphasized that net power output of such like plants which have similar capacity can be improved using the developed model and NSGA-II optimization method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.