Abstract

Methods are presented which enables one to analyze the thermodynamics of systems with long-range interactions. Generically, such systems have entropies which are nonextensive (do not scale with the size of the system). We show how to calculate the degree of nonextensivity for such a system. We find that a system interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also a useful quantity which acts like a local temperatures and it varies throughout the substance. These quantities are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin coupling is studied. This is compared with systems such as those encountered in general relativity and gravitating systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black hole analog. One finds that the analog's temperature and entropy have many properties which are found in black holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated. For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger, the entropy becomes higher near the surface of the system, and becomes more area scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.