Abstract

The thermal denaturation of ribonuclease A and cytochrome c has been studied by differential scanning calorimetry (d.s.c.) and u.v.-visible spectrophotometry in the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) at pH = 5.5 and pH = 4.0, respectively. The quantitative thermodynamic parameters accompanying the thermal transitions from native to denatured state have been evaluated. The results of the reversible thermal denaturations have been fitted with a two-state native-to-denatured mechanism. A comparison has been made of the relative effect of HFIP on the thermal stability of ribonuclease A and cytochrome c. It has been observed that the denaturation capacity of HFIP tends more towards cytochrome c compared with ribonuclease A. The results have been explained on the basis of a fine balance between the preferential exclusion and binding that take place during the course of the denaturation reaction and the structuring of water around the groups of the protein exposed upon denaturation. Using the thermodynamic data obtained from calorimetric and spectroscopic measurements, we have calculated the changes in preferential solvation of ribonuclease A and cytochrome c upon heat denaturation. It is observed that the preferential solvation of these two proteins is specific, indicating that the solvation mechanism is not the same for them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.