Abstract
A thermodynamic analysis of the oxygen solutions in boron-containing Fe–Co melts has been performed. The equilibrium constant of reaction between boron and oxygen, which are dissolved in iron–cobalt melts; the activity coefficients at infinite dilution; and the interaction parameters for melts differing in composition have been determined. The oxide phase formed in the Fe–Co melts containing boron and oxygen comprises FeO and CoO along with the B2O3 phase. The oxide phase compositions over Fe–Co–B–O melts are calculated. As the cobalt and boron contents in the melts increase, the mole fraction of boron oxide increases; in the case of pure cobalt, it is close to unity. The dependences of the oxygen solubility on the cobalt and boron contents in the melts are calculated. The deoxidizing capacity of boron substantially increases as the cobalt content in a melt increases. The composition dependences of the oxygen solubility in boron-containing Fe–Co melts have a minimum, which shifts to a low boron content as the cobalt content in the melts increases. The boron contents corresponding to the minimum in the oxygen solubility curves and the minimum oxygen concentrations corresponding to the boron contents are determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.