Abstract
We explore the thermodynamics of the 2-D Ising model from a random path sampling method. We show how convergence of free energy and magnetization is obtained in a number of sweeps orders of magnitude below the number of total configurations. The effects of external parameters, such as magnetic field (H) and temperature (T) are accounted in a computationally simple way, allowing very detailed (H, T)-dependent calculations. The effects of more complex interactions can also be considered, particularly magnetovolume coupling, which has proven to be difficult to tackle using traditional approaches. We show its effect on magnetic entropy change (magnetocaloric effect) in this microscopic scenario. As magnetic refrigeration technology matures, the microscopic optimization of magnetovolume effects to enhance the magnetocaloric properties may become a valuable tool in the search of new magnetic refrigerants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.