Abstract
AbstractBinding isotherms for acridine orange (AO)–heparin systems can be evaluated solely on the basis of quantitative fluorescence spectroscopic measurements. The evaluation of thermodynamic parameters indicates that the interactions of AO with heparins from several animal sources are similar to each other in magnitude. Binding is highly exothermic (ΔH = −6 kcal mol−1) and is stabilized by dye–polymer and dye–dye (coopertive) interactions, as well as by entropic factors (ΔS = +7 e.u.). The predominant stabilizing factor appears to be the electrostatic attraction between the AO cation and the heparin polyanion, although the other factors are important as well. At 24°C the value of the cooperative binding constants for the various heparins range from 8.8 to 11.3 × 105M−1, corresponding to a free energy of −8 kcal mol−1. The degree of cooperativity, which is a direct measure of dye–dye interaction, varies with polymer:dye ratio; the theoretical basis for this variation remains to be elucidated. Electrophoretic data indicate that each heparin sample consists of a mixture of species, each with its own charge density. This precludes definitive interpretation of observed small differences in the values of the thermodynamic parameters among the various samples until each sample can be resolved into its components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.