Abstract
A mechanism connecting the local untwisting and opening of DNA double helix is proposed. The presented thermodynamical approach is based on two models: the Peyrard-Bishop model that describes the denaturation of DNA due to thermal fluctuations and the model developed by the author describing solitary torsional waves, which propagate along the DNA molecule forced by advancing RNA polymerase. The torsional wave implies that the DNA untwists locally causing a local decrease in the stacking interaction between adjacent base pairs. Molecular dynamics simulations have shown that thermal fluctuations (which are too small at physiological temperatures to denaturate the twisted DNA) may lead to the formation of a denaturation bubble placed in the untwisted region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.