Abstract
HIV-1 reverse transcriptase (RT) is a heterodimeric enzyme that converts the genomic viral RNA into proviral DNA. Despite intensive biochemical and structural studies, direct thermodynamic data regarding RT interactions with its substrates are still lacking. Here we addressed the mechanism of action of RT and of non-nucleoside RT inhibitors (NNRTIs) by isothermal titration calorimetry (ITC). Using a new incremental-ITC approach, a step-by-step thermodynamic dissection of the RT polymerization activity showed that most of the driving force for DNA synthesis is provided by initial dNTP binding. Surprisingly, thermodynamic and kinetic data led to a reinterpretation of the mechanism of inhibition of NNRTIs. Binding of NNRTIs to preformed RT/DNA complexes is hindered by a kinetic barrier and NNRTIs mostly interact with free RT. Once formed, RT/NNRTI complexes bind DNA either in a seemingly polymerase-competent orientation or form high-affinity dead-end complexes, both RT/NNRTI/DNA complexes being unable to bind the incoming nucleotide substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.