Abstract

A field-supported multiphase kinetic Monte Carlo method previously applied to self-assembled trimesic acid molecular layers [Ustinov et al., Phys. Chem. Chem. Phys. 24, 26111 (2022)] was generalized to three-dimensional gas-liquid and gas-solid systems. This method allows us to calculate the thermodynamic potentials of the liquid and solid phases and then determine the parameters of the liquid-solid phase transition. In this study, the requirement that the gas phase be ideal was introduced as an additional condition. It was shown that in a two-phase system, the sum of the analytical expression for the chemical potential of an ideal gas and the external potential imposed on the gas phase exactly equals the chemical potential of the equilibrium crystal or liquid phase. For example, the coexistence of crystalline/liquid krypton and ideal gas has been considered. A comparison with previously published data has shown that the proposed approach provides the most accurate results for determining the parameters of phase transitions and fully satisfies the Gibbs-Duhem equation. This method does not impose any restrictions on the complexity or hardness of dense phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.