Abstract

We have performed molecular dynamics simulations to determine the densities, excess energies of mixing, and structural properties of binary mixtures of the 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) [amim][Cl] and ethanol and 1-propanol in the temperature range from 298.15 to 363.15 K. As in our previous work [J. Chem. Phys. 128, 154509 (2008)], our simulation studies are based on a united atom model from Liu et al. [Phys. Chem. Chem. Phys. 8, 1096 (2006)] for the 1-ethyl- and 1-butyl-3-methylimidazolium cations [emim(+)] and [bmim(+)], which we have extended to the 1-hexyl-3-methylimidazolium [hmim(+)] cation and combined with parameters of Canongia Lopes et al. [J. Phys. Chem. B 108, 2038 (2004)] for the chloride anion [Cl(-)] and the force field by Khare et al. for the alcohols [J. Phys. Chem. B 108, 10071 (2004)]. With this, we provide both prediction for the densities of the mixtures that have mostly not been investigated experimentally yet and a molecular picture of the interactions between the alcohol molecules and the ions. The negative excess energies of all mixtures indicate an energetically favorable mixing of [amim][Cl] ILs and alcohols. To gain insight into the nonideality of the mixtures on the molecular level, we analyzed their local structures by radial and spatial distribution functions. These analyses show that the local ordering in these mixtures is determined by strong hydrogen-bond interactions between the chloride anion and the hydroxyls of the alcohols, enhanced interactions between the anion and the charged domain of the cation, and an increasing aggregation of the nonpolar alkyl tails of the alcohols and the cations with increasing cation size, which results in a segregation of polar and nonpolar domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.