Abstract

The universal mixing rule (UMR), which incorporates an activity coefficient model in a cubic equation of state (EoS), and is applicable to all type of system asymmetries up to solvent/polymer ones, has been recently developed in our laboratory [Voutsas et al., Ind. Eng. Chem. Res. 43 (2004) 6238]. The original UNIFAC model with temperature-independent interaction parameters was used in the original publication, which leads, however, to unsatisfactory VLE predictions at high temperatures and poor heats of mixing predictions. In this study the UMR is applied by coupling the translated and modified Peng–Robinson (t-mPR) EoS with an original UNIFAC-type model that utilizes linearly temperature-dependent interaction parameters, eliminating, thus, the aforementioned weaknesses. The performance of the resulting EoS/ G E model, referred to as UMR-PRU, utilizing the available UNIFAC interaction parameters, as well as some parameters developed here for gas involving pairs, is evaluated in the prediction and, when necessary, correlation/prediction, of various thermodynamic properties, i.e. VLE, LLE, VLLE, SGE and heats of mixing. The results indicate that the new model represents a unique, simple and reliable tool for thermodynamic property calculations for systems of various degrees of non-ideality and asymmetry, including polymer solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.