Abstract
Thermodynamic properties of CO2 are derived from speed of sound in the temperature range 300 to 360 K (from 0 to 6 MPa), and 300 to 220 K (from 0 to 90% of the saturation pressure). The density, the specific heat capacity at constant pressure, and the specific heat capacity at constant volume are obtained by numerical integration of differential equations connecting the speed of sound with other thermodynamic properties. The set of differential equations is solved as the initial value problem, with the initial values specified along the isotherm at 300 K in terms of several accurate values of the density and the specific heat capacity at constant pressure. The density, the specific heat capacity at constant pressure and the specific heat capacity at constant volume are derived with the absolute average deviations of 0.018%, 0.19%, and 0.18%, respectively. The results of numerical integration are extrapolated to the saturation line for ρ, cp, and cv with the absolute average deviations of 0.056%, 2.31%, and 1.32%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.