Abstract

Abstract The relations between the thermodynamic properties of the unary lattice gas and the equivalent binary substitutional and interstitial alloys are discussed. New methods for the estimation of the partial particle energy in a lattice gas from Monte Carlo simulations in both the petit and grand canonical ensembles are presented and evaluated. Taken together with well established procedures for estimating the particle chemical potential and more recent procedures for estimating the lattice gas pressure, it becomes possible, for the first time, to obtain reliable determinations of both the partial and integral quantities for internal energy, entropy and free energy at a given temperature and composition in a rigid binary alloy from the one Monte Carlo experiment in either ensemble. Some illustrative results are given for the square lattice with nearest neighbour interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.