Abstract

Abstract The thermodynamic properties of the Al –Na and Na–Al – H systems have been assessed by combining the “calculation of phase diagram” approach with first-principles predictions. The Gibbs energies of the individual phases were thermodynamically modeled, where the model parameters were obtained from best fit optimizations to combined experimental and first-principles predicted finite temperature data. The first-principles thermodynamic predictions were based upon density functional theory ground state minimizations and direct method lattice dynamics. The predictions proved to be important adjuncts to the assessments whenever experimental measurements were lacking or not feasible. It was shown that the phase stability conditions of sodium alanates, NaAlH4 and Na3AlH6, were well described with the present models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.