Abstract

Electron shuttles (ESs) and Fe-bearing clay minerals are commonly found in subsurface environments and have shown potential in enhancing the bioreduction of Cr(VI). However, the synergistic effect of ESs at different redox potentials and Fe-bearing clay minerals on Cr(VI) bioreduction, as well as the fundamental principles governing this process, remain unclear. In our study, we investigated the role of ESs and Fe(III) in Cr(VI) bioreduction. We found that the acceleration of ESs and Fe(III) are crucial factors in this process. Interestingly, the promotion of ESs on Cr(VI) and Fe(III) showed opposite trends. Electrochemical methods confirmed the limited steps are the extent of reduced ESs and the redox potential difference between ESs and Fe(III), separately. Furthermore, we investigated the combined effect of ESs and NAu-2 on Cr(VI) bioreduction. Our results revealed two segments: in the first segment, the ES (5-HNQ) and NAu-2 did not synergistically enhance Cr(VI) reduction. However, in the second segment, ESs and NAu-2 demonstrated a synergistic effect, significantly increasing Cr(VI) reduction by MR-1. These bioreduction processes all follow linear free energy relationships (LFERs). Overall, our study highlights the fundamental principles governing multivariate systems and presents a promising approach for the remediation of Cr(VI)-contaminated sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.