Abstract

The assessment of the thermodynamic properties of K–Na and Cr–V molten alloys has been theoretically examined using a simple statistical mechanical model based on pairwise interaction to obtain higher-order conditional probabilities that describe the occupation of the neighbouring atoms in molten binary alloys. The optimised values of order energy ω obtained are used to describe a number of thermodynamic quantities computed for different concentrations in the alloys at 384 and 1550 K, respectively. The study shows that there is a tendency for homocoordination (like atoms pairing as nearest neighbour) in K–Na and the existence of heterocoordination in Cr–V at all concentrations. Thus, the consistency between calculated and reported experimental thermodynamic values enforces the legitimacy of the findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.