Abstract

Despite the widespread presence of the globin fold in most living organisms, only eukaryotic globins have been employed as model proteins in folding/stability studies so far. This work introduces the first thermodynamic and kinetic characterization of a prokaryotic globin, that is, the apo form of the heme-binding domain of flavohemoglobin (apoHmpH) from Escherichia coli. This bacterial globin has a widely different sequence but nearly identical structure to its eukaryotic analogues. We show that apoHmpH is a well-folded monomeric protein with moderate stability at room temperature [apparent Δ G° UN(w) = − 3.1 ± 0.3 kcal mol − 1 ; m UN = − 1.7 kcal mol − 1 M − 1 ] and predominant α-helical structure. Remarkably, apoHmpH is the fastest-folding globin known to date, as it refolds about 4- to 16-fold more rapidly than its eukaryotic analogues (e.g., sperm whale apomyoglobin and soybean apoleghemoglobin), populating a compact kinetic intermediate (β I = 0.9 ± 0.2) with significant helical content. Additionally, the single Trp120 (located in the native H helix) becomes locked into a fully native-like environment within 6 ms, suggesting that this residue and its closest spatial neighbors complete their folding at ultrafast (submillisecond) speed. In summary, apoHmpH is a bacterial globin that shares the general folding scheme (i.e., a rapid burst phase followed by slower rate-determining phases) of its eukaryotic analogues but displays an overall faster folding and a kinetic intermediate with some fully native-like traits. This study supports the view that the general folding features of bacterial and eukaryotic globins are preserved through evolution while kinetic details differ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.