Abstract

AbstractMagnesite (MgCO3) is a likely main host of carbonates in the mantle and plays an important role in the transport and storage of carbon in the Earth's mantle. Its physical properties at high pressure and high temperature (PT) are crucial for understanding the deep carbon cycle. Here we investigated thermodynamic and elastic properties of magnesite under the mantle PT conditions using first‐principles calculations with local density approximation (LDA). Magnesite has the seismic velocities close to those of forsterite. The effect of the magnesite on seismic velocity of the carbonated peridotite and eclogite is subtle in the upper mantle. However, magnesite has much smaller seismic velocities and far larger elastic anisotropy than major minerals in the transition zone and lower mantle. The enrichment of magnesite in the transition zone and lower mantle will likely produce seismically detectable low‐velocity zone and velocity anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.