Abstract

An analytical solution for a novel Compressed Air Energy Storage (CAES) system, Supercritical Compressed Air Energy Storage (SC-CAES) system, was conducted in this paper. The analytical solution can explore the evolution and its reason of roundtrip efficiency varying with system key parameters in depth, while it can also reveal the coupling mechanism of different sections of the system. On that basis, the model of exergy destruction for each part was obtained, and the exergy destruction can be easily calculated. Furthermore, the analytical solution has the character of universality due to the deduced method of sectional treatment, hence it can be extended to other similar CAES systems. Lastly, a sensitivity analysis and an exergy analysis were conducted for SC-CAES system. It is found and proved that the system efficiency varies linearly with isentropic efficiencies of compressor and expander, temperature difference of intercooler and reheater, pressure loss of intercooler and reheater. Meanwhile, the main factors of the varying tendency of total exergy destruction with different parameters are revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.