Abstract

Thermodynamic calculations were performed using a modified solgasmix‐pv computer program in order to study the feasibility of codepositing boron nitride (BN) plus aluminum nitride (AIN) by chemical vapor deposition. Reactants considered were AICl3, BCl3 or B2H6, NH3, and H2. Deposition diagrams were generated for the BCl3‐AICl3‐NH3 system over a range of processing conditions such as temperature, total system pressure, and reagent concentrations. Codeposition of BN + AIN was predicted by the calculations for temperatures in the range of 900 to 1700 K and pressures of 10.13 to 101.3 kPa. The predicted deposition efficiency at equilibrium was much higher for BN than for AlN at most reagent compositions. The AlN deposition efficiency increased with decreasing temperature and decreasing BCl3 content, with increasing NH3 content, or with the addition of H2. Aluminum chlorides were found to be the dominant gaseous species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.