Abstract
Pyrolytic oil is currently in its early stages of production and distribution but has the potential to grow into a significant renewable energy source. It may be processed into a variety of useful substances, including chemicals, and used for heating, transportation, and energy production. The present investigation involves the production and characterization of pyrolytic oil from areca nut husk (ANH), with and without ZSM-5. The pyrolysis experiment was conducted in a semibatch tubular reactor at 600 °C and a heating rate of 80 °C min-1 using ZSM-5 at 20 wt %. The pyrolytic oil was examined via elemental analysis, viscosity, density, moisture content, GC-MS, FTIR, higher heating value (HHV), and ash content. The analysis of kinetics verified that the activation energy rises in proportion to the conversion rate. Additionally, employing ZSM-5 in catalytic pyrolysis at 20 wt % boosted the yield of pyrolytic oil by 11% compared to thermal pyrolysis. Employing ZSM-5 at 20 wt % resulted in a decrease in viscosity, oxygen content, and density by approximately 43.40 cSt, 15.20%, and 168 MJ kg-1, respectively. Moreover, it led to an increase in higher heating value (HHV) and carbon content by 11.71 MJ kg1- and 14.06%, respectively. An FTIR study of pyrolytic oil revealed the occurrence of hydrocarbons, aromatics, phenols, alcohols, and oxygenated chemicals. Moreover, GC-MS analysis indicated a significant increase in hydrocarbons (10.31%) and a decrease in phenols (2.36%), acids (6.38%), and oxygenated compounds with the introduction of the catalyst. Consequently, it can be inferred that utilizing ZSM-5 at 20 wt % during the pyrolysis of ANH aids in enhancing both the yield and characteristics of the resulting pyrolysis oil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.