Abstract

Rice field soils contain a thermophilic microbial community. Incubation of Italian rice field soil at 50°C resulted in transient accumulation of acetate, but the microorganisms responsible for methane production from acetate are unknown. Without addition of exogenous acetate, the δ(13)C of CH(4) and CO(2) indicated that CH(4) was exclusively produced by hydrogenotrophic methanogenesis. When exogenous acetate was added, acetoclastic methanogenesis apparently also operated. Nevertheless, addition of [2-(13)C]acetate (99% (13)C) resulted in the production not only of (13)C-labelled CH(4) but also of CO(2), which contained up to 27% (13)C, demonstrating that the methyl group of acetate was also oxidized. Part of the (13)C-labelled acetate was also converted to propionate which contained up to 14% (13)C. The microorganisms capable of assimilating acetate at 50°C were targeted by stable isotope probing (SIP) of ribosomal RNA and rRNA genes using [U-(13)C] acetate. Using quantitative PCR, (13)C-labelled bacterial ribosomal RNA and DNA was detected after 21 and 32 days of incubation with [U-(13)C]acetate respectively. In the heavy fractions of the (13)C treatment, terminal restriction fragments (T-RFs) of 140, 120 and 171 bp length predominated. Cloning and sequencing of 16S rRNA showed that these T-RFs were affiliated with the bacterial genera Thermacetogenium and Symbiobacterium and with members of the Thermoanaerobacteriaceae. Similar experiments targeting archaeal RNA and DNA showed that Methanocellales were the dominant methanogens being consistent with the operation of syntrophic bacterial acetate oxidation coupled to hydrogenotrophic methanogenesis. After 17 days, however, Methanosarcinacea increasingly contributed to the synthesis of rRNA from [U-(13)C]acetate indicating that acetoclastic methanogens were also active in methanogenic Italian rice field soil under thermal conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.