Abstract
Abstract This study deals with an issue of thermo-mechanical facies, reflecting specific thermal and mechanical properties of the subglacial environment. The main objective of this study was to develop a model of glacitectionic deformation and its sedimentary record beneath fast and slow flowing ice sheets, based on investigations conducted in Wielkopolska (west central Poland). Sedimentary structures, mainly at the contact between subglacial tills and glacifluvial sediments, were recognized to delineate typical facies associations in a Weichselian glacigenic succession. Each association was interpreted as a record of the different depositional environments related to different subglacial conditions. Those investigations suggest the substratum was composed of frozen and dry, and wet and mobile spots, and four thermo-mechanical facies were distinguished: A – is representative of slower ice flow, dry and cold subglacial conditions, where driving stresses and normal effective pressure were high; B – is also related to slow ice flow and occurrence of cold subglacial permafrost, but with little amount of unfrozen water (however, higher than in facies A), with similar physical characteristics of the ice sheet as facies A; thermo-mechanical facies C and D represent wet and warm ice sole, with low normal effective pressure and driving stresses, thus lowering sediments’ shear strength and enabling high ice-flow velocities. We suggest that these facies have specific and non-random location, thereby revealing the relationship between subglacial thermo-mechanical conditions and ice sheet dynamics. Slow moving, cold-based ice occurred along ice sheet margins and inter-stream areas, whereas fast-moving, warm-based, well-lubricated ice, was typical of the axial parts of ice streams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.