Abstract

In this paper, thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded (FG) beams on nonlinear elastic foundation are investigated. Nonlinear governing partial differential equation (PDE) of motion is derived based on Euler–Bernoulli assumptions together with Von Karman strain–displacement relation. Based on the Galerkin’s decomposition method, the nonlinear PDE governing equation is reduced to a nonlinear ordinary differential equation (ODE). He’s variational method is employed to obtain a simple and efficient approximate closed form solution for the resulted nonlinear ODE. Comparison between results of the present work and those available in literature shows accuracy of the presented expressions. Some new results for the thermo-mechanical buckling and nonlinear free vibration analysis of the FG beams such as the effects of vibration amplitude, material inhomogeneity, nonlinear elastic foundation, boundary conditions, geometric parameter and thermal loading are presented to be used in future references.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.