Abstract
In the last decades the use of wood as a construction material has been steadily increasing. Among the main reasons behind this, are its renewable resource nature and its low environmental footprint. In this context, one of the main challenges faced by engineers during the design process is the knowledge and characterization of wood’s thermo-mechanical properties. This is related to the large morphological variations present at the microstructural level, that lead to a wide scatter of the macroscopic properties. To circumvent this issue, in this work a multiscale modelling strategy based on asymptotic homogenisation is proposed. The model is based on the hierarchical nature of wood and incorporates the three material scales generally identified in soft woods: (i) the microfibril scale, (ii) the wood cell scale, and (iii) the growth ring scale. The effective thermo-mechanical macroscopic properties are obtained by sequentially applying the homogenisation procedure from the microfibril scale all the way up to the macroscopic scale. The model is employed here to investigate the thermo-mechanical response of radiata pine grown in Chile. To determine values of the microstructural parameters that yield macroscopic properties consistent with those observed experimentally, a parameter identification strategy is proposed. The latter considers four elements: an existing experimental database on timber boards density and bending tests, the multiscale model, a timber board bending test finite element model and a genetic algorithm for the optimization procedure. With the resulting microstructural parameters the model is then used to estimate the effective elastic, thermal, and thermo-mechanical properties of radiata pine wood. When compared with measured experimental data and typical experimental values found in the literature, the numerical estimates demonstrate the model predicting capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.