Abstract

This research study mainly deals with a comprehensive thermodynamic modeling and thermo-economic optimization of an irreversible absorption heat pump. For the optimization goal, various objective functions are considered comprising the specific heating load, coefficient of performance (COP) and the thermo-economic benchmark (F). In order to specify the optimum design variables, non-dominant sorting genetic algorithm (NSGA) is applied satisfying some restrictions. In this optimization study, all three objective functions (e.g. COP, F and specific heating load) are maximized. In addition, decision making is carried out using three well-suited approaches namely LINAMP and TOPSIS and FUZZY. Finally, sensitivity analysis and error analysis are conducted in order to improve understanding of the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.