Abstract
Injection mechanism of top-contact pentacene field-effect transistor (OFET) was investigated in respect to the internal field. The contact resistance was evaluated by the transmission line method for various applied external voltages as well as various pentacene film thicknesses. The behaviour of contact resistance was described in terms of the thermionic emission model (Schottky injection) and internal electric field generated by excess charges accumulated on pentacene–gate insulator interface. It was shown that pentacene film thickness changes the internal electric field affecting the carrier injection barrier. It was concluded that the space-charge field effect made a significant contribution for smaller pentacene film thicknesses and therefore in accordance to the thermionic model was able to decrease contact resistance representing the potential drop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.