Abstract

For the development of temperature-responsive adsorption materials for pharmaceutical protein purification, poly( N-isopropylacrylamide-co- N,N-dimethylaminopropylacrylamide-co- N-tert-butylacrylamide) (P(IPAAm- co-DMAPAAm- co-tBAAm) brush grafted silica beads were prepared through a surface-initiated atom transfer radical polymerization (ATRP). The prepared silica beads as a chromatographic stationary phase were evaluated by observing their thermo-responsive elution profiles of plasma proteins including human serum albumin (HSA) and γ-globulin. Chromatograms of two proteins indicated that negatively-charged HSA was adsorbed on the cationic copolymer brush modified silica beads at higher temperatures with low concentration of phosphate buffer (PB) (pH 7.0) as a mobile phase. The HSA adsorption was attributed to (1) an enhanced electrostatic interaction with the cationic copolymer brush at low concentration of PB and (2) an increased hydrophobic interaction from the dehydrated copolymer at high temperature. Step-temperature gradient enabled HSA and γ-globulin to be separated by the modulation of HSA adsorption/desorption onto the copolymer brush grafted silica beads. These results suggested that the prepared copolymer brush grafted silica beads adsorbed negatively-charged proteins both through electrostatic and hydrophobic interactions by the modulation of column temperature and gave attractive adsorption materials for protein purification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.