Abstract

Thermally stimulated luminescence glow curves of CaB4O7:Dy samples after β-irradiation showed glow peaks at ~335, 530 and 675 K, with a heating rate of 2 K/s. The main peak at 530 K was analyzed using the Tmax-Tstop method and was found to be composed of at least five overlapping glow peaks. A curve-fitting program was used to perform computerized glow curve deconvolution (CGCD) analysis of the complex peak of the dosimetric material of interest. The kinetic parameters, namely activation energy (E) and frequency factor (s), associated with the main glow peak of CaB4O7:Dy at 520 K were evaluated using peak shape (PS) and isothermal luminescence decay (ILD) methods. In addition, the kinetics was determined to be first order (b =1) by applying the additive dose method. The activation energies and frequency factors obtained using PS and ILD methods are calculated to be 0.72 and 0.72 eV and 8.76 × 10(5) and 1.44 × 10(6) /s, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.