Abstract
High purity semi-insulating 4H SiC single crystals have potential applications for room temperature radiation detectors because of the wide band gap and radiation hardness. To control carrier lifetime, a key parameter for high performance radiation detectors, it is important to understand the nature of the deep traps in this material. For this purpose, we have successfully applied thermally stimulated current (TSC) and high temperature resistivity measurements to investigate deep level centers in semi-insulating 4H SiC samples grown by physical vapor transport. High temperature resistivity measurements showed that the resistivity at elevated temperatures is controlled by the deep level with an activation energy of 1.56 eV. The dominant traps revealed by TSC measurements were at 1.1–1.2 eV. The deep trap levels in 4H-SiC samples, the impurity and point defect nature of TSC traps peaked at ∼106 K (0.23 eV), ∼126 K (0.32 eV), ∼370 K (0.95 eV), ∼456 K (1.1–1.2 eV) are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.