Abstract

A novel strategy allowing temporal control of dynamic bond exchange in covalently crosslinked polymer networks via latent transesterification catalysts is introduced. Obtained by a straightforward air- and water-tolerant synthesis, the latent catalyst is designed for an irreversible temperature-mediated release of a strong organic base. Its long-term inactivity at temperatures below 50 °C provides the unique opportunity to equip dynamic covalent networks with creep resistance and high bond-exchange rates, once activated. The presented thermally latent base catalyst is conveniently introducible in readily available building blocks and, as proof of concept, applied in a radically polymerized thiol-ene network. Light-mediated curing is used for 3D-printing functional objects, on which the possibility of spatially controlled reshaping and welding based on dynamic transesterification is illustrated. Since the catalyst is thermally activated, limitations regarding sample geometry and optical transparency do not apply, which facilitates a transfer to well-established industrial technologies. Consequently, fiber-reinforced and highly filled magneto-active thiol-ene polymer composites are fabricated by a thermal curing approach. The on-demand activation of dynamic transesterification is demonstrated by (magneto-assisted) reshaping experiments, highlighting a wide range of potential future applications offered by the presented concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.