Abstract

We study the dynamics of a quantum-coherent thermally isolated Luttinger liquid with noisy Luttinger parameter. To characterize the fluctuations of the absorbed energy in generic noise-driven systems, we first identify two types of energy moments, which can help tease apart the effects of classical (sample-to-sample) and quantum sources of fluctuations. One type of moment captures the total fluctuations due to both sources, while the other one captures the effect of the classical source only. We then demonstrate that in the Luttinger liquid case, the two types of moments agree in the thermodynamic limit, indicating that the classical source dominates. In contrast to equilibrium thermodynamics, in this driven system the relative fluctuations of energy do not decay with the system size. Additionally, we study the deviations of equal-time correlation functions from their ground-state value, and find a simple scaling behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.