Abstract

AbstractBio‐epoxy composites containing boron nitride (BN) particles with different size and shape (0D spherical micro‐ and nanoparticles, 1D nanotubes (T), and 2D nanosheets (S)) are prepared and revealed appropriate thermal conductivity, thermal stability, and mechanical properties. Systems containing one or two BN nanoparticles showed evenly dispersed structures because of applying high‐shear, ultrasonic, or combination of these methods. Microscopic analysis proved that high‐shear assisted ultrasonic technique ended up in an homogeneously dispersed BN nanoparticles in the epoxy matrix. The combination of platelet‐like and tubular nanoparticles synergistically enhanced both the thermal stability and thermal conductivity of epoxy. Differential scanning calorimetry (DSC) thermographs appeared a sharp peak demonstrating excessive thermal energy released because of network formation of BN conductive fillers. The bi‐oepoxy containing equal weight fractions of T and S (1:1 w/w ratio) showed the highest thermal conductivity and tensile strength values of 2.21 W/m.K and 80 MPa, respectively. In conclusion, properties of epoxy nanocomposites are affected by the filler network formation, such that conductive incorporation of 3 wt.% of BN platelet‐like and nanotubes increased thermal conductivity up to 1400% and mechanical properties up to 50% with respect to the neat epoxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.