Abstract

There are a few transient and loss-of-coolant accident conditions in RBMK-1500 reactors that lead to a local flow decrease in fuel channels. Because the coolant flow decreases in fuel channels (FC) leads to overheating of fuel claddings and pressure tube walls, mitigation measures are necessary. The accident analysis enabled the suggestion of the new early reactor scram actuation and emergency core cooling system (ECCS) initiation signal, which ensures the safe shutdown of the reactor and compensates the stagnation flow. Analysis of such conditions is presented in this paper. Thermal-hydraulic analysis was conducted using the state-of-the-art RELAP5 code. Results of the analysis demonstrated that, after implementation of the developed management strategy for destruction of local flow stagnation, the Ignalina nuclear power plant (NPP) would be adequately protected following accidents, leading to local coolant flow decrease in the primary circuit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.