Abstract

A thermal Williams-Comstock recording model was developed to predict the transition length in a longitudinal heat-assisted magnetic recording system. In this paper, we compare the results from the model to experimentally determined transition lengths from a dual-sided heat-assisted magnetic recording spin stand. We found both experimentally and theoretically that there exists an optimal alignment between the thermal profile and the magnetic head, which minimizes the transition length. By properly optimizing the write current and laser power, it was possible to record transitions shorter then those attainable with conventional longitudinal recording.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.