Abstract

A liquid-ambient-compatible thermal wave resonant cavity (TWRC) has been constructed for the measurement of the thermal diffusivity of liquids. The thermal diffusivities of distilled water, glycerol, ethylene glycol, and olive oil were determined at room temperature (25 °C), with four-significant-figure precision as follows: (0.1445±0.0002)×10−2 cm2/s (distilled water); (0.0922±0.0002)×10−2 cm2/s (glycerol); (0.0918±0.0002)×10−2 cm2/s (ethylene glycol); and (0.0881±0.0004)×10−2 cm2/s (olive oil). The liquid-state TWRC sensor was found to be highly sensitive to various mixtures of methanol and salt in distilled water with sensitivity limits 0.5% (v/v) and 0.03% (w/v), respectively. The use of the TWRC to measure gas evolution from liquids and its potential for environmental applications has also been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.