Abstract

Studies on the thermal unfolding of monomeric Acanthamoeba myosin II and other myosins, in particular skeletal muscle myosin, using differential scanning calorimetry (DSC) are reviewed. The unfolding transitions for intact myosin or its head fragment are irreversible, whereas those of the rod part and its fragments are completely reversible. Acanthamoeba myosin II unfolds with a high degree of cooperativity from ca. 40–45°C at pH 7.5 in 0.6 M KCl, producing a single, sharp endotherm in DSC. In contrast, thermal transitions of rabbit skeletal muscle myosin occur over a broader temperature range (ca. 40–60°C) under the same conditions. The DSC studies on the unfolding of the myosin rod and its fragments allow identification of cooperative domains, each of which unfolds according to a two-state mechanism. Also, DSC data show the effect of the nucleotide-induced conformational changes in the myosin head on the protein stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.