Abstract

Due to continued miniaturization, the performance and reliability of electronic devices composed of multiple thin layers of material are highly dependent on effective thermal management. Since the thermal properties of thin films, such as SiO/sub 2/, can vary considerably from bulk values, the determination of those properties (as well as the interface resistance between SiO/sub 2/ and adjacent layers) is critical for the purposes of design. In this work, a transient thermo-reflectance system has been employed to measure the thermal characteristics of thin-film SiO/sub 2/ layers. Results show that for layers of SiO/sub 2/ in the range of 100-1000 /spl Aring/, the intrinsic thermal conductivity (TC) is independent of thickness and smaller than the traditionally reported value of bulk silicon dioxide (1.4 W/m-K). The intrinsic value was measured to be around 90% (1.27 W/m-k) and 75% (1.05 W/m-k) of the latter bulk value for thermally grown (TG) and ion beam sputtered (IBS) oxides, respectively. The thermal interface resistances of TG and IBS SiO/sub 2/ films were measured at 1.68 /spl times/ 10/sup -8/ m/sup 2/-K/W and 2.58 /spl times/ 10/sup -8/ m/sup 2/-K/W, respectively. If a chromium film of around 100 /spl Aring/ is deposited between the gold and SiO/sub 2/ layers, the interface thermal resistance improves to 0.78 /spl times/ 10/sup -8/ m/sup 2/-K/W for TG films and 1.15 /spl times/ 10/sup -8/ m/sup 2/-K/W for IBS films. Thus, the effective thermal resistance of SiO/sub 2/ thin-films (i.e., with interface effects) is up to one order of magnitude smaller than the values reported for bulk SiO/sub 2/.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.