Abstract

Layer-by-layer (LbL) assemblies are remarkable materials, known for their tunable mechanical, optical, and surface properties in nanoscale films. However, questions related to their thermal properties still remain unclear. Here, the thermal properties of a model LbL assembly of strong polyelectrolytes, poly(diallyldimethylammonium chloride)/poly(styrene sulfonate) (PDAC/PSS), assembled from solutions of varying ionic strength (0-1.25 M NaCl) are investigated using quartz crystal microbalance with dissipation (QCM-D) and modulated differential scanning calorimetry. Hydrated exponentially growing films (assembled from 0.25 to 1.25 M NaCl) exhibited distinct thermal transitions akin to a glass transition at 49-56 °C; linearly growing films (assembled without added salt) did not exhibit a transition in the temperature range investigated and were glassy. Results support the idea that exponentially growing films have greater segmental mobility than that of linearly growing films. On the other hand, all dry LbL assemblies investigated were glassy at room temperature and did not exhibit a T(g) up to 250 °C, independent of ionic strength. For the first time, thermal transitions such as T(g) values can be measured for LbL assemblies using QCM-D by monitoring fluctuations in changes in dissipation, allowing us to probe the film's internal structure as a function of film depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.